Performance Analysis of Local Ensemble Kalman Filter
نویسندگان
چکیده
منابع مشابه
The Hybrid Local Ensemble Transform Kalman Filter
Hybrid data assimilation methods combine elements of ensemble Kalman filters (EnKF) and variational methods. While most approaches have focused on augmenting an operational variational system with dynamic error covariance information from an EnKF [1][2][4][5][8], we take the opposite perspective of augmenting an operational EnKF with information from a simple 3D-Variational (3D-Var) method [7]....
متن کاملAssimilating non-local observations with a local ensemble Kalman filter
Many ensemble data assimilation schemes utilize spatial localization so that a small ensemble can capture the unstable degrees of freedom in the model state. These local ensemble-based schemes typically allow the analysis at a given location to depend only on observations near that location. Meanwhile, the location of satellite observations cannot be pinpointed in the same manner as conventiona...
متن کاملAnalysis Scheme in the Ensemble Kalman Filter
This paper discusses an important issue related to the implementation and interpretation of the analysis scheme in the ensemble Kalman filter. It is shown that the observations must be treated as random variables at the analysis steps. That is, one should add random perturbations with the correct statistics to the observations and generate an ensemble of observations that then is used in updati...
متن کاملAdaptive Observation Strategies with the Local Ensemble Transform Kalman Filter
Adaptive observation strategies (AOS) aim to improve forecasts by adding additional observations at a few locations that have no standard observations. Lorenz and Emanuel (1998) designed experiments to evaluate different adaptive strategies with Lorenz 40-variable model. Routine observations are observed over “land” (grid points from 21 to 40) every 6 hours. One adaptive point is chosen from on...
متن کاملAssimilating Nonlocal Observations using a Local Ensemble Kalman Filter
Many ensemble Kalman filter data assimilation schemes benefit from spatial localization, often in both the horizontal and vertical coordinates. On the other hand, satellite observations are often sensitive to the dynamics over a broad layer of the atmosphere; that is, the observation operator that maps the model state to the observed satellite radiances is a nonlocal function of the state. Simi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Nonlinear Science
سال: 2018
ISSN: 0938-8974,1432-1467
DOI: 10.1007/s00332-018-9453-2